Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6689): eadj4591, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513023

RESUMO

Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Conformação Proteica
2.
Angew Chem Int Ed Engl ; 63(9): e202318412, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198567

RESUMO

Vinylogous urethane (VUO ) based polymer networks are widely used as catalyst-free vitrimers that show rapid covalent bond exchange at elevated temperatures. In solution, vinylogous ureas (VUN ) undergo much faster bond exchange than VUO and are highly dynamic at room temperature. However, this difference in reactivity is not observed in their respective dynamic polymer networks, as VUO and VUN vitrimers prepared herein with very similar macromolecular architectures show comparable stress relaxation and creep behavior. However, by using mixtures of VUO and VUN linkages within the same network, the dynamic reactions can be accelerated by an order of magnitude. The results can be rationalized by the effect of intermolecular hydrogen bonding, which is absent in VUO vitrimers, but is very pronounced for vinylogous urea moieties. At low concentrations of VUN , these hydrogen bonds act as catalysts for covalent bond exchange, while at high concentration, they provide a pervasive vinylogous urea - urethane (VU) network of strong non-covalent interactions, giving rise to phase separation and inhibiting polymer chain dynamics. This offers a straightforward design principle for dynamic polymer materials, showing at the same time the possible additive and synergistic effects of supramolecular and dynamic covalent polymer networks.

3.
Org Lett ; 26(4): 895-899, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38259037

RESUMO

Simple 1-phenylpropynones undergo a selective double thia-Michael addition with thiols in buffered media, yielding an interesting dithioacetal linkage joining two thiols. The reactivity of various Michael-alkyne reagents is compared in this chemoselective, atom economical, and non-oxidative cross-linking of two thiols. The stability and chemical reactivity of the dithioacetal links are studied, and the utility of the disulfide targeting bioconjugation methodology is shown by the selective rebridging of native cyclic peptides after the reductive cleavage of their disulfide bridge.


Assuntos
Dissulfetos , Compostos de Sulfidrila , Reagentes de Ligações Cruzadas , Indicadores e Reagentes , Propionatos/química
4.
Org Biomol Chem ; 21(40): 8117-8124, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786324

RESUMO

We report a general method to effect all-carbon (3 + 2) cycloadditions that can elaborate cyclopentenes from a range of olefins. The required dithioallyl cation reagents can be generated in a newly developed mild protocol starting from 2-allyloxypyridine precursors, thus avoiding the use of strong Brønsted acids. The novel method significantly expands the substrate scope, which now also includes acid-sensitive olefins, and thus enables the preparation of previously inaccessible spiro-fused scaffold types from simple and readily available starting materials.

5.
J Org Chem ; 88(20): 14504-14514, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37812456

RESUMO

A stereoselective dearomative cyclopentannulation of benzofurans is reported. A previously reported dearomative (3 + 2) cycloaddition of indoles with 1,4-dithiane-fused allyl cations was found to lack stereoselectivity when more substituted cyclopentene rings are targeted. However, for benzofuran substrates, excellent levels of stereoselectivity were observed for the same allyl cation reagents under very similar reaction conditions. In this full account, we provide a mechanistic rationale and some design principles that govern the stereoselectivity of the intriguing dearomative transformations using dithioallyl cations and demonstrate how the stereoselectivity depends on electronic factors of the starting materials. The stereoselective methodology is also applied in a straightforward dearomative synthesis of the tricyclic sesquiterpenoid natural product aplysin and its analogues, starting from a simple benzofuran.

6.
Chem Sci ; 14(36): 9787-9794, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736629

RESUMO

Triazolinediones are known as highly reactive dienophiles that can also act as electrophilic amination reagents towards enolisable C-H bonds (ionic pathway) or weak C-H bonds (free radical pathway). Here, we report that this C-H amination reactivity can be significantly extended and enhanced via gold(i)-catalysis. Under mild conditions, several alkyl-substituted aryls successfully undergo benzylic C-H aminations at room temperature. The remarkable site selectivity that is observed points towards strong electronic activation and deactivation effects, that go beyond a simple weakening of the C-H bond. The observed catalytic C-H aminations do not follow the expected trends for a free radical-type C-H amination and show complementarity to existing methods. Density functional theory (DFT) calculations and distinct experimental trends provide a clear mechanistic rationale for observed selectivity patterns, postulating a novel pathway for triazolinedione-induced aminations via a carbon-to-nitrogen hydride transfer.

7.
Nat Chem Biol ; 19(11): 1331-1341, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37365405

RESUMO

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.


Assuntos
Proteínas de Arabidopsis , Brassinosteroides , Plasmodesmos/metabolismo , Reguladores de Crescimento de Plantas , Plantas/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
8.
Adv Mater ; 35(31): e2300802, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37200089

RESUMO

On-demand adhesive dismantling has the potential to improve multimaterial product recycling, but its implementation has been hampered by a critical trade-off between strong bonding and easy debonding. As a result, the temperature range in which these temporary adhesives can be used is relatively limited. Here, a new class of dynamic epoxy resins is reported that significantly extends this upper temperature limit and still achieves fast debonding. Specifically, two types of dynamic polyamidoamine curing agents for epoxy hardening are developed, being polysuccinamides (PSA) and polyglutaramides (PGA). As the dynamic debonding/rebonding process of PSA and especially PGA linkages is more thermally demanding and at the same time more thermally robust than previously reported dynamic covalent systems, the resulting materials can be triggered at high temperatures, and at the same time remain bonded over a wide temperature range. The versatility of the PSA and PGA dynamic adhesive curing system is demonstrated in classical bulk adhesive formulations, as well as in dynamic covalent linking to a PSA- or PGA-functionalized surface. As a result, an attractive drop-in strategy is achieved for producing debondable and rebondable epoxy adhesives, with high complementarity to existing adhesive resin technologies and applicable in an industrially relevant temperature window.

9.
Beilstein J Org Chem ; 19: 115-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761474

RESUMO

This review covers the synthetic applications of 1,4-dithianes, as well as derivatives thereof at various oxidation states. The selected examples show how the specific heterocyclic reactivity can be harnessed for the controlled synthesis of carbon-carbon bonds. The reactivity is compared to and put into context with more common synthetic building blocks, such as 1,3-dithianes and (hetero)aromatic building blocks. 1,4-Dithianes have as yet not been investigated to the same extent as their well-known 1,3-dithiane counterparts, but they do offer attractive transformations that can find good use in the assembly of a wide array of complex molecular architectures, ranging from lipids and carbohydrates to various carbocyclic scaffolds. This versatility arises from the possibility to chemoselectively cleave or reduce the sulfur-heterocycle to reveal a versatile C2-synthon.

10.
Chem Sci ; 13(43): 12865-12875, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36519055

RESUMO

Dynamic covalent networks present a unique opportunity to exert molecular-level control on macroscopic material properties, by linking their thermal behaviour to the thermodynamics and kinetics of the underlying chemistry. Yet, existing methods do not allow for the extraction and analysis of the influence of local differences in chemical reactivity caused by available reactants, catalysts, or additives. In this context, we present a rheological paradigm that allows us to correlate the composition of a reactive polymer segment to a faster or slower rate of network rearrangement. We discovered that a generalised Maxwell model could separate and quantify the dynamic behaviour of each type of reactive segment individually, which was crucial to fully comprehend the mechanics of the final material. More specifically, Eyring and Van 't Hoff analysis were used to relate possible bond catalysis and dissociation to structural changes by combining statistical modelling with rheology measurements. As a result, precise viscosity changes could be measured, allowing for accurate comparison of various dynamic covalent network materials, including vitrimers and dissociative networks. The herein reported method therefore facilitated the successful analysis of virtually any type of rate-enhancing effect and will allow for the design of functional and fast (re)processable materials, as well as improve our ability to predict and engineer their properties for future applications.

11.
Angew Chem Int Ed Engl ; 61(48): e202210405, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36161440

RESUMO

Dynamic covalent polymer networks provide an interesting solution to the challenging recyclability of thermosets and elastomers. One of the remaining design constraints, however, is balancing thermal reprocessability in the form of material flow with dimensional stability during use. As a result, many chemistries are being investigated in order to improve bond reactivity control and material robustness. This Minireview highlights a number of promising concepts, with a particular emphasis on disconnecting chemical reactivity in low and high temperature regimes to obtain creep resistant, yet highly dynamic polymer networks. In addition, we will highlight the impact of sharp reactivity changes when applying extrapolation-based approaches during rheological analysis. As a result, we are confident that abandoning the myth of "permanent" reactivity will aid in the development of sustainable polymeric materials that can truly combine the benefits of thermoplastic and thermoset behaviour.

12.
ACS Macro Lett ; 11(7): 919-924, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793550

RESUMO

We present a simple method for increasing the reprocessability of vinylogous urethane (VU) vitrimers while decreasing the possibility of creep deformation at lower temperatures. In particular, varying amounts of triethylenetetramine were added as a comonomer to the curing VU formulation to ensure that all of the primary amines reacted to form enaminone cross-links, resulting in a network without reactive primary amine chain-ends. As a result, transamination was significantly slowed down because secondary amines are much less reactive to VU exchange. On the other hand, at higher temperatures, pendent primary amines can be released via a dynamic, endothermic exchange with a nearby less-reactive secondary amine, thereby (re)activating material flow. As a result, ambivalent viscoelastic behavior could be achieved without depolymerization by dynamically releasing pendent primary amines from vinylogous urethane polymer chains. Through careful comonomer selection, VU vitrimers with low viscosity at processing temperatures and at the same time high viscosity at service temperatures could be prepared without the use of catalysts or additives, leveraging the synergistic effects of mildly reactive functionalities through neighboring group participation.


Assuntos
Aminas , Plásticos , Polímeros , Uretana , Viscosidade
13.
Chem Sci ; 13(18): 5390-5397, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655564

RESUMO

Labelling of tyrosine residues in peptides and proteins has been reported to selectively occur via a 'tyrosine-click' reaction with triazolinedione reagents (TAD). However, we here demonstrate that TAD reagents are actually not selective for tyrosine and that tryptophan residues are in fact also labelled with these reagents. This off-target labelling remained under the radar as it is challenging to detect these physiologically stable but thermally labile modifications with the commonly used HCD and CID MS/MS techniques. We show that selectivity of tryptophan over tyrosine can be achieved by lowering the pH of the aqueous buffer to effect selective Trp-labelling. Given the low relative abundance of tryptophan compared to tyrosine in natural proteins, this results in a new site-selective bioconjugation method that does not rely on enzymes nor unnatural amino acids and is demonstrated for peptides and recombinant proteins.

14.
Org Lett ; 24(23): 4119-4123, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35674713

RESUMO

The (3 + 2) cycloaddition of various indoles with a dithioallyl cation affords dearomatized cyclopentannulated adducts, with complete control of regioselectivity and excellent chemo- and diastereoselectivity. The success of the reaction critically relies on the use of an excess of very strong Brønsted acid, which paradoxically prevents carbocationic side reactions. The reaction tolerates sensitive functionalities such as basic amines or free hydroxyls, and we demonstrate its use in late stage derivatization of highly functionalized, unprotected indoles.


Assuntos
Aminas , Indóis , Ácidos , Cátions , Reação de Cicloadição , Estereoisomerismo
15.
Angew Chem Int Ed Engl ; 61(9): e202113872, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34981887

RESUMO

We report a straightforward chemical strategy to tackle current challenges of irreversible deformation in low Tg vitrimers at operating temperature. In particular, vinylogous urethane (VU) vitrimers were prepared where reactive free amines, necessary for material flow, were temporarily shielded inside the network backbone, by adding a small amount of dibasic ester to the curing mixture. The amines could be released as reactive chain ends from the resulting dicarboxamide bonds via thermally reversible cyclisation to an imide moiety. Indeed, (re)generation of the required nucleophilic amines as network defects ensured reprocessing and rapid material flow at higher temperature, where exchange dynamics are (re)activated. As a result, VU vitrimers were obtained with limited creep at service temperature, yet with good reprocessability at elevated temperatures. Thus, by exerting strong control on the molecular level over the availability of exchangeable functional groups, a remarkable improvement of VU properties was obtained.

17.
Org Lett ; 23(22): 8828-8833, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34730365

RESUMO

Novel C-4',C-5' cyclobutane-fused spirocyclic ribonucleoside analogues were prepared. Thermal [2 + 2] cycloaddition between dichloroketene and readily derived 4'-exo-methylene furanoses afforded a first entry to the required constrained ribofuranoses, relying on a carbonyl transposition sequence. Alternatively, an unusual stereoselective ionic [2 + 2] cycloaddition using methyl propiolate promoted by methylaluminoxane gave a complementary, more direct approach to such ribofuranoses. Further conversion to the constrained adenosine analogues revealed promising structure-dependent inhibition of the protein methyltransferase PRMT5:MEP50 complex in the (sub)micromolar range.


Assuntos
Adenosina
18.
J Am Chem Soc ; 143(38): 15834-15844, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34525304

RESUMO

Here, we report the introduction of internally catalyzed amide bonds to obtain covalent adaptable polyamide networks that rely on the dissociation equilibrium between dicarboxamides and imides. While amide bonds are usually considered to be robust and thermally stable, the present study shows that their dynamic character can be activated by a smart choice of available building blocks without the addition of any external catalyst or other additives. Hence, a range of polyamide-based dynamic networks with variable mechanical and viscoelastic properties have been obtained in a systematic study, using a straightforward curing process of dibasic ester and amine compounds. Since the dissociation process involves a cyclic imide formation, the correlation between ring size and the thermomechanical viscosity profile was studied for five- to seven-membered ring intermediates, depending on the chosen dibasic ester monomer. This resulted in a marked temperature response with activation energies in the range of 116-197 kJ mol-1, yielding a sharp transition between elastic and viscous behavior. Moreover, the ease and versatility of this chemistry platform were demonstrated by selecting a variety of amines, resulting in densely cross-linked dynamic networks with Tg values ranging from -20 to 110 °C. With this approach, it is possible to design amorphous polyamide networks with an acute temperature response, allowing for good reprocessability and, simultaneously, high resistance to irreversible deformation at elevated temperatures.

19.
Angew Chem Int Ed Engl ; 60(8): 4070-4074, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33169902

RESUMO

A stereoselective gold(I)-catalyzed vinylcyclopropanation of alkenes has been developed. A gold-coordinated cationic vinyl carbene species, readily generated via a rearrangement of the ethylenedithioacetal of propargyl aldehyde, reacts with a wide range of alkenes to afford thio-substituted vinylcyclopropanes. The gold-catalyzed vinyl cyclopropanation proceeds under mild conditions at room temperature and is generally selective for the formation of cis-substituted cyclopropanes. The reaction allows the formal introduction of a "naked" vinyl carbene, by subsequent chemoselective hydrodesulfurisation of the ethylenedithio-bridge. The synthetic utility of the new method is demonstrated by a short, racemic formal synthesis of the alkaloid cephalotaxin, hinging on a key vinyl cyclopropane-cyclopentene rearrangement.

20.
Chem Soc Rev ; 49(23): 8425-8438, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33112323

RESUMO

Strong covalent chemical bonds that can also be reversed, cleaved or exchanged are the subject of so-called dynamic covalent chemistry (DCC). Applications range from classical protective groups in organic chemistry and cleavable linkers for solid phase synthesis, to more modern applications in dynamic compound libraries and adaptive materials. Interest in dynamic, reversible or responsive chemistries has risen in particular in the last few decades for the design and synthesis of new DCC-based polymer materials. Implementation of DCC in polymers yields materials with unique combinations of properties and in some cases even unprecedented properties for covalent materials, such as self-healing materials, covalent adaptable networks (CANs) and vitrimers. In particular, the incorporation of DCC in polymer materials aims to find a balance between a swift and triggerable reactivity, combined with a high degree of intrinsic robustness and stability. Applying harsh conditions, highly active catalysts or highly reactive bonding groups, as is done in classical DCC, is often not feasible or desirable, as it can damage the polymer's integrity, leading to loss of function and properties. In this context, so-called internally catalysed DCC platforms have started to receive more interest in this area. This approach relies on the relative proximity and orientation of common functional groups, which can influence a chemical exchange reaction in a subtle but significant way. This approach mimicks the strategies found in enzymic reactions, and is known in classical organic chemistry as neighbouring group participation (NGP). The use of internal catalysis or NGP within polymer material science has proven to be a highly attractive strategy. This tutorial review will outline examples showing the scope, advantages and pitfalls of using internal catalysis within different DCC applications, ranging from small molecules to dynamic polymer materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...